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An inherent numerical problem associated with the fully explicit pseudospectral numerical 
simulation of the incompressible Navier-Stokes equation for viscous flows with no-slip 
walls is described. A semi-implicit scheme which circumvents this numerical difficulty is 
presented. In this algorithm the equation of continuity rather than the Poisson equation for 
pressure is solved directly. Pseudospectral formulation of the channel flow problem using 
Fourier series and Chebyshev polynominals expansions is given for this scheme. An example 
demonstrating the applicability of the method is given. 

1. INTRODUCTION 

With the advent of large and fast computers in recent years, the three-dimensional 
time-dependent computation of turbulent flows is becoming feasible. One of the 
promising approaches for turbulent flow calculations is the large eddy simulation 
technique (e.g., [l-5]). In large eddy simulation technique, one numerically solves for 
the large-scale flow field using the three-dimensional time-dependent Navier-Stokes 
equations and models the small-scale (subgrid scale) flow field. Both the large eddy 
simulation technique and the direct simulation approach [6-91 are in their primitive 
stages and have not been applied to complex flows. 

A common objective of the large eddy and direct simulation techniques is to test 
and suggest statistical models of turbulence which can in turn be used in a simpler 
method for complex flows. In this case, it is imperative that errors introduced by the 
numerical scheme are minimized. This is necessary for an objective evaluation of the 
turbulence model. 

Spectral or pseudospectral methods [lo] have a very high formal order of accuracy 
and are especially well-suited for minimizing numerical errors. In particular with 
these methods, derivatives are evaluated without phase error. This is not the case 
with finite-difference or finite-element methods. However, in contrast to spectral 
approximation, pseudospectral methods are susceptible to aliasing errors. Never- 
theless, aliasing is not usually considered to be a serious problem because the damping 
associated with most physical problems limits aliasing errors and instabilities [ll]. 
In any case, aliasing errors can formally be eliminated by an appropriate filtering 
technique [6, 91. 
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For problems in which only periodic boundary conditions are used (e.g., decay of 
homogeneous isotropic turbulence) the application of spectral methods is relatively 
straightforward [3, 61. For viscous flow problems with no-slip walls, however, one 
may encounter a serious numerical difficulty with spectral methods. In this paper, 
we first analyze a numerical problem associated with fully explicit (time advancing) 
simulation of the Navier-Stokes equations for viscous flows with no-slip walls in 
which pseudospectral methods are used. We will show that the application of a 
combined explicit (time advancing) and pseudospectral method to these flows results 
in nonconvergent series expansions for dependent variables which in turn yield an 
erroneous computation. Then we present a semi-implicit algorithm which circumvents 
this problem and gives a pseudospectral formulation of this algorithm for channel 
flow. In this formulation, flow variables are expanded into Fourier series in the 
homogeneous directions (x, and x,) and Chebyshev polynomials in the direction 
normal to the no-slip walls (x2). Finally, a simple example which has essentially all 
the mathematical features of turbulent channel flow is worked out. 

2. FUNDAMENTAL NUMERICAL PROBLEM 

In this section we describe an inherent numerical difficulty associated with the fully 
explicit solutions of the Navier-Stokes equations in their primitive form. Consider the 
momentum equations 

6Ui ZP t= 
aXi 

Hi, (2.1) 

where 
<_ a2u. 

Hi = - & uiuj + v z 
J axj axj . 

In the fully explicit (time advancing) solution of Eq. (2.1), one normally specifies an 
arbitrary initial solenoidal velocity field satisfying the no-slip condition. Then one 
proceeds to solve the appropriate Poisson equation for pressure obtained from the 
application of the divergence operator to the momentum equations to ensure that 
V . u = 0 at the next time step. The resulting pressure is then used together with the 
computed Hi in (2.1) to advance ui in time. At the solid boundaries the Neumann 
boundary condition, 

2: 
an 

vn ’ V2u, (2.2) 

is normally used in conjunction with the Poisson equation for pressure. Here n is a 
unit vector normal to the solid boundary. This condition is obtained from the normal 
momentum equation using the no-slip condition. 
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In addition to the Neumann boundary condition (2.2) for pressure, one can obtain 
the Dirichlet boundary condition, 

(2.3) 

from the evaluation of the tangential momentum equations at the wall. Here 7 is a 
unit vector tangent to the solid boundary. In general, however, the Neumann and 
Dirichlet problems for pressure may not have the same solution [5, lo]. Only one of 
the Eqs. (2.2) or (2.3) is sufficient to solve the Poisson equation. Hence, in an explicit 
time advancing of Eq. (2.1) Eqs. (2.2) and (2.3) are not in general enforced simul- 
taneously. This can cause a serious numerical difficulty if pseudospectral techniques 
are used to evaluate spatial derivatives. To make this clear, we consider, as an example, 
three-dimensional time-dependent flow between two parallel plates. The no-slip 
boundary condition is used at the walls (x2 = f 1) and periodic boundary conditions 
are employed in the streamwise, x1 , and spanwise, xs , directions. 

Chebyshev polynomials (see Section 4) and Fourier series expansions will be used 
to represent the flow variables in the vertical and horizontal directions, respectively. 
For the purpose of this section, the use of Chebyshev polynominals is not essential, 
and any set of orthogonal functions would do. Let 

p = f; ; c a,(k, , k3) Tm(xJ ei+l+*$ 
1 k3 

(2.4a) 

(2.4b) 

Hi = ;” c c cim(k, , ks) T&x,) ei(k1a1ik323), (2.4~) 
nz=o kl kt 

and 

(2.4d) 

where T,&$ is the mth-order Chebyshev polynomials of the first kind. Double primes 
indicate that the first and last terms in the series are to be taken with factor l/2, and 
(Nz + 1) grid points are used in the x2 direction. From (2.4b) we readily obtain 

(2.5) 

where x2 f = cos ei (see Section 4), ej = nj/NZ , j = 0, 1, 2 ,..., N, , and NI and N3 
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are the number of mesh points in x1 and xg directions, respectively. Note that here 
we have enforced the no-slip boundary conditions, that is, 

Substituting the right-hand side of (2.1) for &Jilt in (2.5) and using (2.4) together 
with the orthogonality of the expansion functions, we obtain 

x {(-l)“+” + 11. (2.6) 

The last term in (2.6), which is the result of enforcing the no-slip boundary conditions, 
is the source of trouble. In general, it has a finite value irrespective of the value of n, 
and, hence, does not approach a vanishing level for arbitrary large values of 12 (or NJ. 
This in turn results in a nonconvergent series expansion for &J6t which in practice 
yields an erroneous and meaningless computation. It should be noted that the last 
term in (2.6) is identically equal to zero if (2.2) and (2.3) are enforced simultaneously. 
However, as was mentioned earlier, only one of them is used as the boundary condition 
for the Poisson equation. 

Before concluding this section, we emphasize that the problem addressed here can 
be avoided if one uses three-point finite differences rather than spectral techniques to 
approximate partial derivatives in the direction normal to the solid boundaries [5]. 
But this problem does cause serious numerical difficulty if spectral methods are used. 

3. A SEMI-IMPLICIT SCHEME 

The roots of the numerical difficulty discussed in the previous section lie in the fact 
that the continuity equation is enforced indirectly through a Poisson equation which 
has nonunique boundary conditions and the fact that explicit (time advancing) schemes 
treat the problem as an initial value problem rather than an initial-boundary value 
problem. 

In what follows we outline a method that circumvents the numerical difficulty 
mentioned in the previous section. This numerical scheme treats the pressure and 
viscous terms in the Navier-Stokes equation implicitly and the remaining terms 
explicitly. The equation of continuity rather than the Poisson equation for pressure is 
solved directly. 

Let us start with the Navier-Stokes equations: 

(3.1) 
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where 9i is equal to the convectiveterms. For time advancing we use the second-order 
Adams-Bashforth method [12] on 9( and the Crank-Nicolson method [13] on +/ax, 
and a’ui/i’xj axi . Thus we have 

where superscripts denote the time step. Let /I = 2/v dr. Rearrangement of (3.2) 
yields 

(3.3) 

Finally, we write the continuity equation at time step IZ + 1 

For the channel flow (see Section 2), let us Fourier transform (3.3) and (3.4) in the 
streamwise, x1 , and the spanwise, x, , directions. This transformation converts the 
set of partial differential equations (3.3) and (3.4) to a set of ordinary differential 
equations for every pair of Fourier modes k, and k, with x2 as the independent 
variable. Note that for flows that are homogeneous in streamwise and spanwise 
directions (e.g., fully developed turbulent channel flow, plane Couette flow), periodic 
boundary conditions can be used in these directions. The use of periodic boundary 
conditions in the homogeneous directions can be justified if the lengths of the 
computational box are large enough to include the important large eddies [14]. In 
the remainder of this section all the variables with a superscript are to be interpreted 
as two-dimensional, Fourier-transformed quantities. Fourier transforming (3.3) and 
(3.4) results in the following set of ordinary differential equations for the dependent 
variables 

&f-l 

+ + (p - k,2 - k,2) u;+l + ik,f? +P+’ 

= (p - k12 - kx2) uln + /3 $ (3Zln - So-‘) 
d2u n - ik,B-$P - --&, 

2 

= (/3 - k12 - k;) urn + j!3 9 (39,” - Lzy) 

s81/35/3-7 

(3.5a) 

(3.5b) 



386 MOIN AND KIM 

and 

ik,u:‘l 1 dam’ + ik&+’ = 0, 
2 

(3.5d) 

where 
i=m. 

Thus, for every pair of k, and k, , we have four coupled linear ordinary differential 
equations with u:+l(k, , x2 , k3), $+‘(kl , x2 , k3), ui+l(k, , x2 , k3), andg”+l(k, , x2 , k3) 
as unknowns. In the next section we will describe the solution technique for the above 
set of ordinary differential equations using the Chebyshev polynomials. 

4. SOLUTION METHOD USING CHEBYSEV POLYNOMIALS 

Equations (3.5a)-(3.5d) have successfully been solved for the case of turbulent 
channel flow using second-order finite difference schemes to approximate derivatives 
in the vertical, x2 , direction [5]. In this section, we use Chebyshev polynomials to 
approximate derivatives in the x2 direction. The resulting system of equations is then 
solved for the Chebyshev-Fourier series expansion coefficients. The essential feature 
of the Chebyshev polynomial approximation is that it has infinite order accuracy 
(in the sense that for an infinitely differentiable function, errors decrease more rapidly 
than any power of l/N as N -+ co) and can be implemented very efficiently using fast 
Fourier transform routines [lo]. The powerful convergence of Chebyshev series has 
been used by Lanczos [15] in numerical solution of differential equations as far back 
as four decades ago. Properties of Chebyshev polynomials can be found in Lanczos 
[16], Fox and Parker [17], etc. An important difference between Fourier series 
expansion and Chebyshev series expansion lies in the capability of handling boundary 
conditions. The latter requires no special boundary conditions in contrast to the 
former which requires periodic boundary conditions. For nonperiodic boundary 
conditions the well-known Gibbs phenomenon near the boundary destroys the 
convergence rate of Fourier series expansion. For this reason, in the numerical 
simulation of fluid-flow problems involving no-slip boundary condition, Chebyshev 
polynomials are preferred to any other sets of orthogonal functions [7, lo]. In 
addition, note that T,(cos 0) = cos me. Thus, the transformation (x2 = cos @, 
which is adequate for boundary layer coordinate stretching, renders the evaluation 
of the Chebyshev expansion coefficients particularly efficient with the use of FFT 
routines. 
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We begin by expanding the two-dimensional Fourier transform of flow variables 
in terms of Chebyshev polynomials. Let 

u;+‘(k, , x2 , k3 = ;” Mk, , k3 ~,,A4 
V&=0 

4+% 3 x2 , kJ = $’ cm& , kJ T&2), 
WZ=O 

(4.1) 

s (4 , ~2 , kd = ;” aC(kl, k3) T,(x2), 
V&=0 

and 

Similar relations hold for derivatives of $+l, z$+l, and pn+l. Note also that a& , a&, , 
and &Z-l are identically zero. 

Substituting (4.1) into (3.5a) we obtain 

a2 + (B - k12 - h2) a,,, + iklB -$ d, = ql, , m = 0, I,2 ,..., Nz (4.2) 

where ql,‘s are the coefficients of Chebyshev expansion of the right-hand side of 
Eq. (3.5a). Using the recursion formulas between Q; , a; , and a,,, (see [17]), 

2ma, = a& - a&+, , 
(4.3) 

we obtain 

2ma& = a~-, - a,“,,, , 

2maI, + (/3 - k12 - k,2)(a,,-, - a,,,) + ik$ !/ (dmml - 4n+3 

= 41,-, - q&+1 > m = 1, 2 ,..., IV2 + 1. (4.4) 
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A further application of Eq. (4.3) on Eq. (4.4) gives 

91,~, - 41, 41, - 91,+g 
2(n7 - I) - 2(m t 1) ’ m = 2,..., N2 

(note that aNZ+1 = a& = akz = a;;,1 A 0) where p’ = p - k12 
operations to (3.5b)-(3.5d) yield 

where 

em-, - 42, em - q‘L+2 
2(m-1) - 2(nrI-1) ’ 111 = 2,..., N2 

I 
112 

Y=, 
for m = N2 - 1 
for mfN,--I, 

(4.5a) 

ks2. Similar 

(4.5b) 

P’ -~ 2(m-~1)C”‘+‘+ 2m-2(m-])- I 
P’ B’ 

2(m + 1) I 
8’ cm + qm + 1) cm+2 

At 
+ ik3B T- [ 

1 
2tm _ ,) k2 - j2(m’- 1)+2(m’+ I) I dm+ 2(m : 1) dm+21 

q3,4 - q3, 93, - 93,+* = - = 2(m - 1) 2(m + 1) ’ m 2,..., N2 , (4.5c) 

ikl(a,,,-l - a,,.,) + (2 - &NJ mb, t ik,(c,-, - GA = 0, 
m = l,..., N, + 1. (4.5d) 

No-slip boundary conditions at the walls (x2 = tl) give 

(4.5e) 
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Equations (4.5a)-(4.5d) together with boundary conditions (4Se) form 4(N, + 1) 
equations for 4(N, + 1) unknowns, thus closing the system without any pressure 
boundary condition at the walls. Now, we can solve for a,,, , b,,, , c,,, , and d,, given qi, 
(i = 1, 2, 3) which are obtained from the data at the previous time steps (n, 12 - 1). 
Inverse Fourier and Chebyshev transforms yield uT+l, z$+l, uF+‘, and p”- l in the 
physical space. 

It is important to appreciate that in the present numerical formulation all of the 
governing equations are satisfied at the boundaries as well as inside the domain. Thus, 
Eqs. (2.2) and (2.3) are simultaneously enforced in this method and the difficulty 
discussed in Section 2 is absent. In addition, the present formulation implies that in 
spite of the appearance of the pressure derivatives in Navier-Stokes equations, no 
pressure boundary conditions are required at the walls. Hence, in the viscous in- 
compressible flow problems only velocity boundary conditions are necessary. This is 
in accord with the fact that physics does not provide a priori boundary conditions for 
pressure as it does for velocities. 

5. NUMERICAL EXAMPLE 

Due to the simplicity of its geometry and some experimental advantages, channel 
flow has been a particularly attractive reference flow for both theoretical and experi- 
mental turbulence research. As a result, there is a considerable number of experimental 
as well as theoretical findings available for a detailed evaluation of large eddy or 
direct simulation techniques. For the purpose of this paper, we give a simple example 
to demonstrate the applicability of the method described in the previous sections. 
Although the problem is very simple in nature, it contains all the essential mathe- 
matical features of turbulent channel flow as well as basic transitional and turbulent 
shear flows. 

The problem deals with an arbitrary initial velocity field developing under the 
action of a mean pressure gradient in a two-dimensional channel until the steady-state 
solution is obtained. The initial velocity field satisfying the continuity equation and 
no-slip boundary condition is formed with three-dimensional disturbances on top 
of a two-dimensional mean flow as follows: 

47rx, . 27rx, ul(xl , x2 , x3) = C(1 - xz8) + E 2 sin z-xp cos L sm ~ , 
1 L3 

and 

47rx, 277x3 
&(X1 , X2 , X3) = --E(I + cos xX2) sin - sm ___ , 

Ll L3 

%(X1 > x2 3 x3) = --E z sm L L, . 4~x1 sin ~TT.x. cos 2~x, 7 1 La ’ 

where L, and L, are the lengths of the computational box in the x1 and x3 directions, 
respectively, and z is 10 ‘A of the averaged mean velocity. Note that all the length scales 
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FIG. 1. Results of the computation x2. = cos(?rjiS), j = 0, I,..., 8. U/UC is the velocity non- 
dimensionalized by the steady-state centexkne velocity; x2 is the coordinatk normal to the wall, 
nondimensionalized by the channel half width; uCLt/h is the nondimensional time based on the 
centerline velocity and the channel half width; and h IS the channel half width. 

are nondimensionalized by the channel half width to give x2 = &I at the wall 
locations. The constant C was chosen such that the initial mass flux would be the same 
as the final equilibrium mass flux for a given Reynolds number. The steady-state 
solution can be arrived at irrespective of the values of C, but with this choice one can 
closely simulate the entry length problem. For the Reynolds number under con- 
sideration, Re = 100 (based on averaged mean velocity and the channel width), 
which is small enough to keep the flow laminar, the three-dimensional disturbances 
gradually die out and the mean flow develops to a fully developed laminar Poiseulle 
flow. 

For this example, 16 uniform grid points were used in the x1 direction, 8 uniform 
grid points in the x3 direction, and 9 grid points with nonuniform spacings, 

S’, = COS(Z-j/8), ,j = 0, I,..., 8, (5.1) 

were used in the x2 direction. Results of the computation are shown in Fig. 1. Velocity 
profiles are analogous to those of the entry region of channel flow. However, the 
present profiles are developing in time rather than in space, since periodic boundary 
conditions are used in the streamwise direction. In addition, during the course of 
integration the perturbations on the mean flow were damped to a vanishing level. 

6. SUMMARY AND CONCLUSION 

A fundamental numerical ditTiculty associated with fully explicit (time advancing) 
integration of Navier-Stokes equations for incompressible viscous flow problems 
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with no-slip walls is discussed in detail (Section 2). It was shown that, in general, 
numerical methods that use explicit time advancing together with pseudospectral 
methods yield nonconvergent series expansions for the dependent variables. A semi- 
implicit algorithm, which solves the continuity equation directly rather than the 
Poisson equation for pressure, is presented as a remedy for the difficulty. In doing so, 
the ambiguity in imposing the proper boundary condition for the Poisson equation is 
eliminated. A pseudospectral formulation for this algorithm is given. In this formu- 
lation, flow variables are expanded into the Fourier-Chebyshev polynomial series. 
The resulting system of equations is closed without any pressure boundary conditions 
on the walls. 

Based on the discussion of Sections 2 and 4, we believe that in the numerical 
simulation of viscous incompressible flows with no-slip walls where spectral techniques 
are to be used, the continuity equation rather than the Poisson equation for pressure 
should be solved. In addition the numerical method should treat the problem as an 
initial boundary value problem by treating pressure and viscous terms implicitly. 

In a future article, we will apply the numerical method presented in this paper to 
the case of turbulent channel flow. There a comparison will be made between the 
results of the present solution procedure and that of [5], where second-order, finite- 
difference schemes (rather than Chebyshev polynomials) were used to calculate 
derivatives in the x2 direction. 
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